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Unified Approach to Wave Diffraction by
Space—Time Periodic Anisotropic Media

KATSU ROKUSHIMA, MEMBER, IEEE, JIRO YAMAKITA, SHIZUO MORI, anp KENJI TOMINAGA

Abstract — The diffraction properties of electromagnetic waves propagat-
ing in a planar anisotropic medium with tensor permittivity which is
modulated periodically with respect to space and time are analyzed by
extending the previous theory for time-invariant anisotropic dielectric
gratings. The method applies to any isotropic or anisotropic medium, any
polarization of the incident plane wave, and any orientation of the grating
vector. The analysis is formulated in a unified matrix form so that
calculations can be performed systematically. As numerical examples of
the general analysis, the optical diffractions by an acoustic wave in a
birefringent crystal and by a cholesteric liquid crystal are treated, where
the approximate two-wave analysis is also derived and the accuracy is
discussed by comparison with the rigorous analysis.

1. INTRODUCTION

OPTICAL DIFFRACTION by planar dielectric grat-
ings has been extensively studied for many years.
Analysis for these periodic structures plays an important
role as the basis of integrated optics, acousto-optics, ho-
lography, and liquid crystal structures. There have been
numerous papers on the subject of grating diffraction with
many different analytic methods [1]-[7]; these are sum-
marized in the references of the [7]. However, to the
authors’ knowledge, most of the rigorous analysis has been
limited to the case of isotropic gratings, with only slight
attention given to gratings.

Dixon [8] has considered anisotropic Bragg diffraction
by traveling acoustic waves in optically anisotropic crystals
and has. given an approximate solution for diffracted in-
tensity. Hope [9] has also discussed Brillouin scattering by
acoustic waves in birefringent media using integral equa-
tion methods. However the results are given in somewhat
complicated form and the numerical calculations are based
on an approximate two-wave analysis. The wave propa-
gation and dispersion in several periodic liquid crystal
structures have also been studied extensively and the re-
sults are given by the rigorous numerical 4X4 matrix
method [10], by approximate dynamic theory [11], [12],
and by exact and approximate analytic methods [13]-{15].
The 4X4 matrix method has also been applied to wave
propagation in birefringent layered media [16]. However,
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those analyses are limited to the case where the grating
vector is perpendicular to the slab surface.

The authors have proposed a rigorous analysis for spa-
tially periodic anisotropic media [17]. In this paper the
previous method is extended to cover both space- and
time-periodic anisotropic media, and the analysis is for-
mulated in a unified matrix form. As applications of the
general theory, the numerical results are given for optical
diffraction by an acoustic wave in a birefringent crystal
and by a cholesteric liquid crystal. The approximate two-
wave analysis for a special case is also derived and the
accuracy of the numerical calculations is discussed.

II. ANALYSIS

As shown in Fig. 1, we consider the optical diffraction
by a space-time periodic anisotropic medium bounded by
two isotropic uniform media with relative permittivity e;
(I=1,3). For the incidence of a generally polarized wave
in the xz plane with an angle of incidence 6,, all the field
components of the incident wave have the form of
exp[j{wyf — \/e_lko(x cosf, + zsind,)}], where w, is the
optical angular frequency and k, = ‘*’om =2a/\ is the
wavenumber in vacuum.

A. Eleciromagnetic Fields in the Space —Time Periodic
Anisotropic Medium

The relative tensor permittivity & of the medium with
permeability g, is given by

€xx ‘Exy €xz
e=[e,]=]% S G (1)
EZ)C EZy EZZ

with

511('3’)=Z€zj,lexp{jl(K'r—Qt)} (i,j=‘x,y,z)
! .

@

where K is the grating vector having any orientation in
three dimensions, |K|= K =2#7/A, A is the space period,
Q is the angular frequency, and ¢, , is the / th order
Fourier coefficients known for a given medium. Thus, in a
crystal traversed by a traveling acoustic wave with a con-
stant phase velocity v =Q /K, the relative permittivity is
given by &(r-7). A similar space-periodic variation of &(r)
with @ =0 exists in a liquid crystal structure. As in the
previous paper, we normalize the space and time variables
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Fig. 1. Geometry of wave diffraction by a space—time periodic medium.

by k, and w,, respectively, putting kyr—r(k,x = x,
koy — y,koz — z) and wyt — t. For simplicity, these nor-
malized variables are used unless otherwise stated. Then,
Maxwell’s equations are expressed as

curl\/70_E= - 8(‘/Z>0H)/8t
curl {Z, H = 3(&(r-1){Y, E) /31
where Y0=1/Zo=m and
e, (rt)= Zlc,j,,exp{jl(nk‘r —w,t)}

(3)

4)

with
n,=K/ko=ip+iqg+is
Inil=n,=A/A
w, =2 /w,. (5)

Here i, (i = x, y, z) is the unit vector along the i axis.

Taking into account the phase matching condition at the
interfaces for the incidence of a plane wave, electric and
magnetic fields can be expanded by the space—time
harmonics from the Floquet theorem:

VY E=Ye,(x)exp{— j(n, r—w,t)}

\[Z_OH=th(x)exp{—j(nm-r—wmt)} (6)

where the index m under the summation sign is under-
stood to run over all values of m=0,+1,+2,-++ and

e,(x)=2ie,(x)  h,(x)=%ih,(x) (7

n,=1,Pn + lqu + LS

Pm=Pot mp 9 =mq

5o =€, sinf,

w,=1+mo,.

S, =8q+ ms
(®)
©)

Here p, is arbitrary and can be set equal to zero.

By substituting (6) into (3), multiplying exp { j(n,, r —
w,,t)} on both sides and integrating over y, z, and ¢ for
each period, we get the following coupled-wave equations
in matrix form (Appendix I), as in the time-invariant
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gratings [17]:

=i "= 10
—h=iCh, "D (10)
ey
h e,
5l I Pl A CEY
h

y

Here f, and f, are column matrices consisting of the
space—time harmonics of the tangential and normal field
components to the slab surface, and e,=e,(x) and h,=
h, (x) are column matrices with elements e, (x) and
h,,(x). C and D are coupling matrices expressing the
interaction of the space—time harmonics and are given by

Cu Cp
C= (12)
G Gy
with
_ B o
C. = qexxexy_‘_p qexxlqw —w
11 ( -1 _ )+2~1 “ls-ly
| o€, 08, — € ) 57 WE €, W p
c _{ se;xlexy se g !
2 w(e —€,.€6 )+ - et
L zy ZXTXXTXY qsw wezxequw

1

g€, €5, "‘15;)}‘*’43
G = w(e e le —¢ )—s -1 “lgw !
ya€xx€xz = €y qw WE, €W
c. - [ seje,+p w—se s !
2 _w(EZZ - ezxe;;exz) _qzw_l welxe;xlsw71 + p
(13)
D= - e;xlexy - E;)}qw_l - €;xlexz E;xlsw_l (14)
—se! 0 qu? 0
where
€= [fu,/m] = [eij,mfl]
p=[8[mpm] q=[81mqm] s=[8lmsm]
W= [Slmwm] 1 = [Slm]' (15)

Here, C is a 42m +1)X4(2m +1) matrix, D is a 4Q2m +
1)X2(@2m +1) matrix, and C,,, are 22m +1)X22m +1)
matrices, while €, are 2m+1)X(2m+1) submatrices,
ejjl are the inverse matrices of e, ,and, p,gq. s, w, and 1
are (2m +1) X (2m +1) diagonal submatrices, where §,,, is
the Kronecker delta. For isotropic gratings €,, = §, €. The
appearance of w in the coupling matrices C and D is due
to the Doppler effect, by which the angular frequency of
the mth-order diffracted wave is shifted to wy(l+mw,).
For time-invariant gratings, w = 1.

In the usual two-dimensional case in which the grating
vector K lies in the plane of incidence (xz plane), g =0
and the plane of diffraction is also in the xz plane. Then,
C), expresses the coupling between TE waves (with
e, h,, h, components) and C,, expresses the coupling
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between TM waves (with e, e,, h, components), while C;,
and C,, express the mutual coupling between TE and TM
waves. Moreover, when ¢,, (i# j)=0, Cj,=C;; =0 and
then the problem can be solved separately for TE or TM
waves by using only C;; or C,,.

By transforming

f=Tg (16)

(10) is reduced to

d

8= ke (17)
Here, k=[§,,,x,] is a diagonal matrix, with x, =« ?, the
eigenvalues of the n X n matrix C, where n=2n"=4Q2m
+1). T=[T*"T 1=[U}---U U ---U,] is the di-
agonalizer of C with eigenvectors U,* corresponding to
k7, and g is a column matrix with elements g*. Equation
(10) has eigensolutions U, exp(jrtx)gt which corre-
spond to the optical eigenmodes traveling along the + x
directions.

B. Electromagnetic Fields in the Uniform Isotropic Medium
In the uniform isotropic region, e, ;=8 el and p=0in
(13), and then C becomes C* with all the diagonal

submatrices. The diagonalizer T“ for C“ is explicitly given
by

s (e)ed s (/e)td

| S8 Vedg  —s8 —Veg
4 (e)es  —d (et
gt —Ves -4t Ves
—[r* 1] (18)

with diagonal submatrices § =[6,,4,], §=1[0,,5,], and .

£=18,,, /@y, where k4t =F £ =Fwie—n}, is the

cigenvalue of C% n,,=VsZ+ Pr, Gp="4m/Pim Sm=
8,/ M.m» and the corresponding g is expressed as

Eg+

l\/Ig+
Eg_
I\,Ig_

(19)

Fgt—[Bg*, .- Bgg .. Byl
t Mg, o Mggt o Mg ]", (20)

Here, the field amplitudes of each eigenmode in the uni-
form region are normalized to [Fe, | = [Me,,| = 1. The super-
scripts E and M refer to TE and TM waves, and the signs
+ refer to the propagation along the + x directions.

The mth-order eigenmode expresses a TE or a TM plane
wave of the form exp[— j(£§,x+ ¢,y +s5,2)] whose
frequency is shifted to w,,. In the two-dimensional case,
TE waves have tangential field components of e, and h,
while TM waves have those of ¢, and h,. However, in the
three-dimensional case, both TE'and TM waves have all

“ous; that is,
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Fig. 2. Boundary surfaces and unknowns.

region 2 T g;(-d)

region 3

field components because the plane of diffraction does not
lie in the xz plane [17).

C. Boundary Conditions

Within regions I (I =1,2,3), the solution of (17) is given
by

{gr(x)} _ [exp[jnr(x—xo)] 0 ]
g7 (x) 0 exp [ iy (x~ x,)]

.[g;r(xo)

g (xo)

where exp[ 7 (x — x0)] = [8,0,rexp { i f(x = x,)}] are
diagonal matrices and g (x,) are constant column
matrices at x = x,,.

At the boundary surfaces (x = 0 and x = —d), tangen-
tial components of the fields \/?0 E and \/Z H are continu-
£2(0)= £(0) and exp(jp,d) fo(~ d) =
fi3(— d), where exp| jp,d] is a diagonal matrix with four
diagonal submatrices exp| jp,d]=[98;,,exp(jp,,.4)]- Since
kF have complex values (Im{k>}} 20), exp(F jrk3,d)
may become very large for higher order k3. Therefore,
boundary conditions have been expressed in somewhat
modified form in order to avoid overflow problems in the
numerical computation. Thus, from (6), (11), and (21), and
taking g5 (0) and g5 (— d) as the unknowns in region 2 as
in Fig. 2, we get

] (21)

g7 (0)

T By 0 ||gf(=d)| [T gr(0)

[ o B; T] g (0) ‘[ o ](22)
g5 (—d)

with

.+
B1§=T2[CXP[{)K2d] (1)]

1 0
B{3=—exp[jp2d]T2[0 exp[—jx;d]]' (23)

D. Diffraction Efficiency

From (22), diffracted waves g{ (0) and g; (—d) are
obtained for the incidence of a TE or TM wave:

BN ()= [0--1--0) Mg (0) =0, (24)

The mth-order powers along the -+ x directions in regions
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Fig. 3. Optical diffraction by an acoustic wave in a crystal. (a) Geome-

try. (b) Forward Bragg diffraction.

1 (I =1,3) are given by, for both TE and TM waves,

BYPRL = Re(&),,) P Mg 1Y o (25)

Therefore, the mth-order diffraction efficiencies of the
transmitted and reflected waves 7" = P /P, are given
for arbitrary orientation of the waves.

For a lossless and time-invariant medium, the power
conservation relation requires X,,Lg v( 1), + 75,,) =1, which
can be used as a check for the numerical calculations.
However, for a time-periodic medium pumped by external
source (for instance, by an acoustic wave), this relation
does not hold because energy transfer occurs due to the
parametric coupling in the medium.

III. NUMERICAL RESULTS
A. Optical Diffraction by an Acoustic Wave

As shown in Fig. 3, we assume that an acoustic shear
wave polarized along the y axis propagates in the xz plane
with the propagation vector K inclined to the slab normal
at an angle §. The medium in the slab has a uniaxial
wurtzite crystal structure with its optic axis along the y
direction. Coordinates are chosen such that the x, y, and z
axes are along the [010], [001], and [100] directions, respec-
tively.

The acoustic wave is given by

u(r,t) =i, Asin(n,-r— w,t) (26)
where
K/ky=n,=i p+is
=n,(i,cosf+i,sind). (27)

The components of the strain tensor S;; due to the acoustic
wave is given by S, cos(n,-r — «,t), where S, =3(4,K, +
A, K,). The strain induces a small periodic variation A&(r, r)
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in the tensor permittivity €. This effect is usually described
in terms of photo-elastic coefficients p,,,, and is given

by [9]
Ae, (r,1) =A¢, cos(n, r— w1)

AGU == €tkejlpkImrLSmn (28)

where €, are the elements of tensor permittivity in the .
absence of strain. In this coordinate system, the acoustic

wave with A=A = A4,;, K, =K,, and K, = K, produces

components of the strain tensor S, = AK, and 5= 4K,

which produce nondiagonal elements €., and €, in the

original permittivity tensor by (28), where customary ab-

breviations of indices 4 = (23) = (32), 5= (13)=(31), Py,

= P,y,, and the fact P,;;=P,;; are used. Therefore

elements of € in region 2 are given by

e =2 -
€xx =€, =1, €y = 1
€, =€, =08n,n,cosfcos(n;r—wt)
€,,=¢,,=0n,n,sinfcos(n,r—wt) (29)

where n, and n, are ordinary and extraordinary refractive
indices of the crystal without strain, respectively, and the
change in the dielectric permittivity is put to — n2n%P,, KA
=0dn,n,. The elements ¢,, in C of (13) become, in matrix
form, for instance,

_ : .
1 0 0 0
0 1 0 O
€..=ng )
0 0 1 0
0 0 0 1
L -
01 0 0
B 1 01 0
€, = Fh,n,cos80 , ete.
0 1 0 1
0 0 1 0

(30)

Due to ¢, , and ¢, TE-TM mode conversion takes place
in this forward diffraction. For the incidence of an TE
wave, the M th-order Bragg condition between TE and TM
waves is given by [18], [19]

Mnl? = —n_cos(6,— H)iwnﬁcosz(ﬂr— 0)+ win—n?

(31)
where 0, is the refraction angle given by @ sind,=n,siné,.

The diffraction efficiencies of the transmitted waves ',
for the incidence of a TE wave at the first-order Bragg
condition (M = —1) are shown in Figs. 4-6. Calculations
were performed by using the parameter values of n,=
2.470, n,=2.453 (CdS), n}, =0.74557, n?=0.11225, 8§ =
0.1,  =80°, and #, =160°, and by putting v =1 (Q < w,).
The parameter values of the uniform regions are chosen as
€, = €;=n> to minimize the effect of the boundary reflec-

wy =1+ Maw,
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Fig. 4. The diffraction efficiencies of transmitted waves for the inci-
dence of a TE wave at the first-order Bragg condition. (a) n} = 0.74557,
(b) n? =0.11225, and (c) n}, = 0.74557 with w, = 0.03 ~ 0.05.
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Fig. 5. Variation of the diffraction efficiencies with the angle of inci-
dence.

tion and to compare with the approximate two-wave
analysis.

Figs. 4 and 5 show the variation of %/, with the index
normalized thickness of the grating 8k,d and with the
angle of incidence 6,. The calculations were performed by
retaining up to m = 3, where m is the order of harmonics
taken into the calculations, that is, m=0,+1,. .-, + .
The error in the power-conservation relation was of the
order of 1072 in all our results. The results of the two-wave
approximation given by putting M= —1 and w_,=1 in
Appendix IT are as follows:

c 2
7, = ( — sinykod) (32)
’ Dol 1Y

where
c=08n,(s_,cosd— p_,sinf)/4
A= ("i_Pz—l—szl)/“P-l

(33)
are also shown by the dashed curves. As seen in Fig. 4(b),
TM, and TE, waves cannot be neglected due to the
relatively large value of § and small value of n, although
the Bragg condition is not satisfied exactly for M =1.

Fig. 6 shows the variation of %), with modulation index
8 for fixed values of 8k,d = 2.0 in Fig. 4(a), where m was
retained up to m = 4 for larger values of 8. It can be seen
from Fig. 6 that %", begins to deviate from the two-wave
approximation near 8> 0.01 and that the deviation in-
creases considerably for d > 0.1 with the appearance of the
higher order diffractions, showing the limit of the two-wave
approximation. In the practical applications, the quantity
8 is usually of the order of 1073 and then the two-wave
approximation will give fairly exact results.

So far we put w =1 because the values of w, = Q /w, are
the order of 107¢ in practice. However, the theoretical

Do = h,cosd,
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Fig. 6. Varnation of the diffraction efficiencies with the modulation
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analysis still holds for & # 1. We then show some effects of
time-varying medium in Fig. 4(c) by hypothetically putting
®, = 0.03 ~ 0.05. Other parameter values are the same as
those in Fig. 4(a). The calculations were performed by
retaining up to m = 7 because the converence of the solu-
tion becomes poorer due to the parametric coupling in the
time-varying medium. As can be seen from the figure, the
diffraction efficiency of the TM_, wave is decreased due
to both the parametric coupling and the deviation from the
true Bragg condition. This can also be anticipated from
(A4) and (A7) in Appendix 1L

B. Optical Diffraction by a Cholesteric Liquid Crystal (CLC)

As shown in Fig. 7, let the helical axis of a CLC with
pitch P be along the u axis, which is inclined to the
surface normal by an angle 8 in the xz plane. The tensor
permittivity of the CLC for the uvw coordinate system is
given by

1-8 0 0
&=¢l 0 1—-8cos2a Ssin2a (34)
0 dsina 1+ 8cos2a

where
e=(e, +e,)2=7>
§=(e, —€.)/(e, +e,)
€,=€,=n> €
a=2mu/P.

(35)

This tensor permittivity can be represented by an ellipsoid
in which the €, =€(1— 8) principal axis is always parallel
to the u axis, and the two other principal axes ¢, = (1 — §)
and e, =€e(1+8) spiral around the u axis with pitch
P =2u/a [10], [11]. According to (34), the structure is
periodic along the u axis with a space period A= P/2.
Since the quantity § expressing the periodic variation of
the tensor permittivity in the CLC is usually of the order
of 1071, the approximate analysis may not always give
correct results and the 4X4 matrix method is used for
precise calculations. However, the method cannot be ap-
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)

Fig. 7. Optical diffraction by a cholesteric liquid crystal. (a) Geometry.
(b) Backward Bragg diffraction.

plied to the case where the helical axis of the CLC is not
perpendicular to the surface. Such situations may be real-
ized through the orienting effect of boundaries [11].

The tensor permittivity for the xyz coordinate system is
then obtained by rotating the old coordinate frame about
the v axis through an angle 8 and its elements become

€., =€(1—8cos?*8 + §sin*fcos2a)
€,,=&(1~8cos2a)
€,,=¢(1— 8sin’6 + §cos?fcos2a)

€. =€, =—¢dsinfsinla

xy yx
edcosfsina

€.,=¢, =—¢édcosfsinf(1+cos2a) (36)

xz

where

n,r=2a (37)

ne=\/A=2\/P

and in matrix form, for instance,

2 -8 0 0

c -5 2 -85 0
€,,== ,
o2 0 -8 2 -8
0 0 -8 2
_ | !
0 -1 0 0
jedcosd 1 0 -1 0
€, =" , etc.
g 2 0 1 0 -1
0O o0 1 0

(38)
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Fig. 8. The diffraction efficiencies of reflected waves (reflection spec-
tra) for the incidence of a TE wave.

Fig. 8 shows the diffraction efficiencies of the reflected
waves (reflection spectra) 7}, near the first- and second-
order Bragg conditions, where §,=135°, § =10°, and d /A
=30. The parameter values of the CLC are chosen as
n2=2690, n2=2200, and §=0.1002 for M =1, and
n?=3.060, n2=2.430, and § = 0.11475 for M = 2, respec-
tively, and those of the uniform regions are chosen as
€ =€, =225[14].

The calculations were performed by retaining up to
m =3 with energy conservation error of 10~ % as before.
Since all diagonal and nondiagonal elements €, have
periodic variations, both TE-TE and TE-TM diffractions
take place simultaneously. The arrows in the figure at
n,=1.780, n, =1.895 and n, =1.007, n, =1.069 show the
first- and second-order Bragg reflection points corre-
sponding to TE-TM and TE-TE diffractions. In this
backward diffraction, some of the lower order eigenvalues
k,, have complex values near this Bragg points that corre-
spond to the first- and second-order stopbands. Outside
these stopbands, these eigenvalues have real values that
correspond to the passband in which selective reflections
do not occur. As can be seen from Fig. 8, the first-order
reflection spectra oscillate rapidly with the variation of n,
due to the effect of both multimode coupling and multiple
reflections at the boundaries, and they cannot be expressed
exactly by the approximate two-wave analysis. Fig. 9 shows
the variation of 7, and 7/, with the thickness of the CLC
at n, =1.790 in Fig. 8. The small beats due to the multiple
reflection disappear gradually with increasing d/A be-
cause the incident TE, wave is totally converted to re-
flected TE, and TM, waves before it reaches the other
boundary for larger values of d /A.
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0.0 o
0 5 10 15 20 25 30
da /A
Fig. 9. Variation of the diffraction efficiencies with the thickness of the
CLC.
TABLE I

ACCURACY OF THE FIRST-ORDER REFLECTED DIFFRACTION
EFFICIENCIES WITH 8 AS A PARAMETER FOR THE
INCIDENCE OF TE WAVES

3 0.05 0.1 0.2 0.3
, TEO—rTEl
m 2m + 1 ny
1 3 0.053897 0.161734 0.729490 0.835059
2 5 0.054371 0.176875 0.733845 0.828723
3 7 0.054371 0.176876 0.733863 0.828928
4 9 0.054371 0.176876 0,733863 0.828929
5 11 0.054371 0.176876 0.733863 0.828929
[ 13 0.054371 0.176876 0.733863 0.828929
TEo-rTM1
m 2m + 1 ny
1 3 0.157467 0.824571 0.045721 0.019838
2 S 0.157633 0.810122 0.036696 0,024229
"3 7 0.157633 0.810122 0.036701 0.024267
4 9 0.157633 0.810122 0.036701 0,024267
5 11 0.157633 0.810122 0.036701 0.024267
6 13 0.157633 0.810121 0,036701 0.024267

0, =135°, 0 =10°, d /A =30, n, =1.79.

C. Accuracy of the Numerical Calculations

Table I shows the accuracy of the solution by the
truncation of the matrix C in the case of Fig. 8 with the
fixed value of d /A and € with § as a parameter, where m
is the order of space harmonics and 2m +1 is the total
number of space harmonics used in the calculations. In

.this case, €, =¢,=¢€(1—6), and ¢, = €(1+ §) varies with 8

so that the Bragg condition is satisfied only for § =0.1.
From this table, it can be seen that the solutions have
almost converged at # =3. Since the other examples
showed similar results, most of the calculations were per-
formed by retaining up to m = 3-4 with the error in the
power-conservation relation of the order of 1078 in all our
results.

IV. CONCLUSIONS

A rigorous analysis of wave diffraction by space-time
periodic anisotropic media has been formulated. The direc-
tion of the grating vector, the modulation of the medium,
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and the polarization of the incident plane wave are all
arbitrary. The solution is reduced to an eigenvalue prob-
lem of the coupling matrix whose elements are given by a
unified form so that calculations can be performed by
systematic matrix calculations. The method applies to arbi-
trarily thick or lossy media without encountering overflow
problems in the computations by giving boundary condi-
tion in somewhat modified form. As numerical examples,
optical diffraction by an acoustic wave and by a CLC are
considered, and the results are compared with the ap-
proximate two-wave analysis. Any level of accuracy can be
obtained by increasing the space-time harmonics. Al-
though the retention of relatively few harmonics is suffi-
cient for continuously modulated time-invariant media,
usually more harmonics are necessary for time-varying
media because the effect of parametric coupling increases
with an increase in modulating frequency.

APPENDIX I
DERIVATION OF THE COUPLING MATRICES
By substituting (6) into (3), multiplying exp { j(n,, ¥ —
w,,t)} on both sides, and integrating over y, z, ¢ for each
period, we get the infinite set of coupled-wave equations

de

ym . . .
= JPlom T S xm = — J@, P
8x jpm ym ]qm xm ] m zm
aezm h
— jp€.nt JS, 6., = J®
ax ]pm m -] m-xm ] m-ym
dh, ; .
. —jpmhym+.]thxm=.]wmzzezz,lfmezl
dx
I 1
ah_

om

- .]pmhzm + jsmhxm =
ax

- jwmz }:eyt,l—m‘etl (Al)
[

q"leZm - Smeym = wmhxm

_thznt+smhym=wmz Zexz,l—mez[' (AZ)
[

Equations (A2) can be solved for e,, and #4,,. Then,
substituting these into (A1), we get the coupled-wave equa-
tions (10) in matrix form with C and D given by (12)-(14).

APPENDIX 11
DERIVATION OF APPROXIMATE TwWO-WAVE ANALYSIS

If we retain only m =0 and m = M terms in the rigor-
ous equation (10) with € given by (29) and eliminate
h,.(i=y,z), we get the coupled differential equations for
e,, with the second derivatives. Neglecting further the

terms of d’e,,, /dx?, 8de,, /dx, and 8°,, for small values
of 8, we get the following differential equations:

de,, . cn,
=] €.m
dx PoPum
de, c
Y42 jhe, = j—e,q (A3)
dx n

[
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with
c=28n(s)c080 — p,,sinf) /4
A= (whnd = ply =) /4Py (A4)

where ¢ and A represent the effective coupling coefficient
and the deviation from the Bragg condition, respectively.
The solution of (A3) under the boundary conditions of
e,o(0) =1 and e,,,(0) = 0 becomes

A
€,0= (cosyx+j— sinyx)exp(—ij)
’ Y

¢
e,y = j— sinyxexp(— jAx) (A5)
nyy
with
e
Y= + A%, (A6)
PoPu

The zeroth- and Mth-order powers along the x direction
are BPy = pole,ol* and MPy = wyln e, yl>/py. Since x
represents the normalized variable, the diffraction ef-
ficiency becomes

MPy(—kod) _

2
C .
Ny = %5 (0) —— smykod) . (A7)

_ wM(
PoPmY

Equation (A7) shows that the diffraction efficiency is
increased or decreased by a factor w,, due to the paramet-
ric coupling in the time-varying medium.
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