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Unified Approach to Wave Diffraction by
Space-Time Periodic Anisotropic Media

KATSU ROKUSHIMA, MEMBER, IEEE, JIRO YAMAKITA, SHIZUO MORI, AND KENJI TOMINAGA

Abstract —The diffraction properties of electromagnetic waves propagat-

ing in a planar anisotropic medium with tensor pennittivity which is

modulated PeriMlcally with respect’ to space and time are anafyzed by

extending the previous theory for time-invariant anisotropic dlelectic

gratings. The method applies to any isotropic or arsisotropic medium, any

polarization of the incident plane wave, and any orientation of the grating

vector. The arrafysis is fornudated in a unified matrix form so that

calculations can be performed systematically. As numerical examples of

the generaf analysis, the opticsddiffractions by an acoustic wave in a
birefringent crystal and by a cholestericliquid crystaf are treated, where

the approximate two-wave analysis is also derived and the accuracy is

discussed by comparison with the rigorous analysis.

L INTRODUCTION

o PTICAL DIFFRACTION by planar dielectric grat-

ings has been extensively studied for many years.

Analysis for these periodic structures plays an important

role as the basis of integrated optics, acousto-optics, ho-

lography, and liquid crystal structures. There have been

numerous papers on the subject of grating diffraction with

many different analytic methods [1]–[7]; these are sum-

marized in the references of the [7]. However, to the

authors’ knowledge, most of the rigorous analysis has been

limited to the case of isotropic gratings, with only slight

attention given to gratings.

Dixon [8] has considered anisotropic Bragg diffraction

by traveling acoustic waves in optically anisotropic crystals

and has given an approximate solution for diffracted in-

tensity. Hope [9] has also discussed Brillouin scattering by

acoustic waves in birefripgent media using integral equa-

tion methods. However the results are given in somewhat

complicated form and the numerical calculations are based

on an approximate two-wave analysis. The wave propa-

gation and dispersion in several periodic liquid crystal

structures have also been studied extensively and the re-

sults are given by the rigorous numerical 4 x 4 matrix

method [10], by approximate dynamic theory [11], [121,

and by exact and approximate analytic methods [13]–[15].

The 4 x 4 matrix method has also been applied to wave

propagation in birefringent layered media [16]. However,
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those analyses are limited to the case where the grating

vector is perpendicular to the slab surface.

The authors have proposed a rigorous analysis for spa-

tially periodic anisotropic media [17]. In this paper the

previous method is extended to cover both space- and

time-periodic anisotropic media, and the analysis is for-

mulated in a unified matrix form. As applications of the

general theory, the numerical results are given for optical

diffraction by an acoustic wave in a birefringent crystal

and by a cholesteric liquid crystal. The approximate two-

wave analysis for a special case is also derived and the

accuracy of the numerical calculations is discussed.

H. ANALYSIS

As shown in Fig. 1, we consider the optical diffraction

by a space-time periodic anisotropic medium bounded by

two isotropic uniform media with relative permittivity 61

(1= 1,3). For the incidence of a generally polarized wave

in the xz plane with an angle of incidence fli, all the field

components of the incident wave have the form of

exp[.j{tiot – fiko(xcosdi + Zsinei)}l, where ‘iO ‘s ‘he

I’__optical angular frequency and ko = @O~OPO= 27T/~ is the

wavenumber in vacuum.

A. Electromagnetic Fields in the Space – Time Periodic

Anisotropic Medium

The relative tensor permittivity t of the medium with

permeability PO is given by

[1
Eee=[q]=:;f:6; (1)

c2X E 6
ZY ‘z

with

~,,(~>~) = Z~lj,lexp {jl(K”r– Qt)} (i, j=-x, y,z)
[

(2)

where K is the grating vector having any orientation in

three dimensions, lK I = K = 2n/A, A is the space period,

!2 is the angular frequency, and cZj,~ is the lth order

Fourier coefficients known for a given medium. Thus, in a

crystal traversed by a traveling acoustic wave with a con-

stant phase velocity u = Q/K, the relative permittivity is

given by t(r. t ). A similar space-periodic variation of t(r)

with !2 = O exists in a liquid crystal structure. As in the

previous paper, we normalize the space and time variables
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Fig. 1. Geometry of wave diffraction by a space–time periodic medium.

by k. and tiO, respectively, putting kOr ~ r( kOx ~ x,

koy + y, koz ~ z) and OOt -+ t. For simplicity, these nor-

malized variables are used unless otherwise stated. Then,

Maxwell’s equations are expressed as

curl~ll= d(t(r. t)~E)/f3t (3)

where YO= I/ZO = ~x and

tl~(r, t) = ~tl~,lexp{jl(n~.r–a,t)} (4)
1

with

n~ = K/k. = iXp + iYq + iZs

In,] = n,= A/A

6+.= fi/a~. (5)

Here i, (i= x, y, z) is the unit vector along the i axis.

Taking into account the phase matching condition at the

interfaces for the incidence of a plane wave, electric and

magnetic fields can be expanded by the space–time

harmonics from the Floquet theorem:

~E=Ze.(x)exp{-j( n..r-omt)}

~H= sh.(x)exp{-j(nm,r-~mt)}(6)
m

where the index m under the summation sign is under-

stood to run over all values of m = O, +1, f 2, . “ “ and

@m(x) = Xi,e,m(x) h~(x) =~i,htm(x) (7)
1 z

nm = ixpm + iyqm + iz~m

P.= Po+mP q~=mq s.= so + ms

so =~sine, (8)

com=l+mu,. (9)

Here p. is arbitrary and can be set equal to zero.

By substituting (6) into (3), multiplying exp { j(nm. r –

u,. t)} on both sides and integrating over y, z, and t for

each period, we get the following coupled-wave equations

in matrix form (Appendix I), as in the time-invariant

gratings [17]:

Here fi and $. are column matrices consisting of the

space–time harmonics of the tangential and normal field

components to the slab surface, and e, = ei(x) and hi=

h,(x) are column matrices with elements ei~(x) and

h ,n(x). C and D are coupling matrices expressing the

interaction of the space–time harmonics and are given by

with

(12)

(13)

where

cij= [c~],lm 1= [(ij,m-ll

P = [~/mPml 9 = [ ~lm% ] s = [il[msm]

w = [ a[mww 1 l=[81m]. (15)

Here, C is a 4(2m + 1) X 4(2m + 1) matrix, D is a 4(2rn +

1)x 2(2m +1) matrix, and C~~ are 2(2n-I + 1) X 2(2m +1)

matrices, while Cij are (2m +1)x(2 m +1) submatrices,

6~1 are the inverse matrices of cl, and, p, q, s, LO,and 1

are (2 m +1) x(2 m +1) diagonal submatrices, where dl~ is

the Kronecker delta. For isotropic gratings ~,~ = 8Z,C The

appearance of u in the coupling matrices C and D is due

to the Doppler effect, by which the angular frequency of

the m th-order diffracted wave is shifted to Uo(l + ma,).

For time-invariant gratings, u = 1.

In the usual two-dimensional case in which the grating

vector K lies in the plane of incidence (XZ plane), q = O

and the plane of diffraction is also in the xz plane. Then,

Cll expresses the coupling between TE waves (with

e,, hX, h= components) and C22 expresses the coupling
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between TM waves (with eX, e=, hy components), while C12

and C21 express the mutual coupling between TE and TM

waves. Moreover, when Clj (i # j) = O, C12 = Czl = O and

then the problem can be solved separately for TE or TM

waves by using only Cll or C22.

By transforming

&=Tg (16)

(10) is reduced to

d
~g = jKg. (17)

Here, K = [8mnKfl] is a diagonal matrix, with Kn = K;, the

eigenvalues of the n X n matrix C, where n = 2n’ = 4(2wI

+1). T=[T+T-] =[Uf. O. U~U:. .OU~Y] is the di-

agonalizer of C with eigenvectors U~* corresponding to

Kn; , and g is a column matrix with elements g.$. Equation

(10) has eigensolutions U~$ exp(jcjx)g$ which corre-

spond to the optical eigenmodes traveling along the + x

directions.

B. Electromagnetic Fields in the Unforrn Isotropic Medium

In the uniform isotropic region, Cij = tlijd and p = O in

(13), and then C becomes C“ with all the diagonal

submatrices, The diagonalizer T u for C” is explicitly given

by

I

i (1/@&j i (1/@&j

Tll= it &q – i( - &q

–g (1/@& –g (l/k )&i

96 - &i –46 hi 1=[Tu+TU-](18)

with diagonal submatrices g = [ 81~~n], i = [ 81~~~ ], and

& = [~M$’m/qJ, where K:* = ~ ~m = ~ ~= is the

eigenvalue of C‘, n ~~ ‘m Qm=qmin,m ‘m=
Sm/n ~~, and the corresponding g is expressed as

[1E+
g

Eg+=[Eg& . .. EgEg. ]Eg; ]’

(19)

~+=[Mg:m . .. MgMg.]rg:]r. (20)

Here, the field amplitudes of each eigenmode in the uni-

form region are normalized to lEe~l = l“e~l = 1. The super-

scripts E and M refer to TE and TM waves, and the signs

+ refer to the propagation along the ~ x directions.

The rnth-order eigenmode expresses a TE or a TM plane

wave of the form exp [ – j( + ~~x + q~y + s~z)] whose

frequency is shifted to o~. In the two-dimensional case,

TE waves have tangential field components of eY and h,

while TM waves have those of e= and h ~. However, in the

three-dimensional case, both TE and TM waves have all

region 1
t

9;(0)
i

g;(o)

Jg;(o) ‘=0
region 2

! CJ:(-d)
x=-d

I

region 3 J 9;

Fig. 2. Boundary surfaces and unknowns.

field components because the plane of diffraction does not

lie in the xz plane [17].

C. Boundary Conditions

Within regions I (I= 1,2, 3), the solution of (17) is given

by

[ Hg;(x) _ exp[jtc~(x –xO)] o

gi(~) – o exp[jK~(x–xo)]
1

[1.d(xo)
(21)

g; (Xo)

where exp[jtc~(x – Xo)] = [~~.,exp { jK~,(x - Xo)}] are

diagonal matrices and g; (xo) are constant column

matrices at x = Xo.

At the boundary surfaces (x= O and x = – d), tangen-

tial components of the fields ~E and ~H are continu-

OUS; that is, J1(0) = MO and exp(~p~d)j~(- d) =

L( – d ), where exp [ jpzd] is a diagonal matrix with four
diagonal submatrices exp [ jpzd] = [dlm exp ( jpznd)]. Since

Kn~ have complex values (Im { Kn; } z O), exp ( T jN~~, d)

may become very large for higher order K j. Therefore,

boundary conditions have been expressed in somewhat

modified form in order to avoid overflow problems in the

numerical computation. Thus, from (6), (11), and (21), and

taking g; (0) and g~ ( – d) as the unknowns in region 2 as

in Fig. 2, we get

[

– T:h B~ O

0 B; T;-

with

[
B;= T, ‘Xp

I

‘[T;-:(o)]’22)

D. Diffraction Efficiency

From (22), diffracted waves g:(0) and g; ( – d ) are

obtained for the incidence of a TE or TM wave:

““K(0) =[O”””l””” OI’ ‘,Eg; (0)= O. (24)

The m th-order powers along the + x directions in regions
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Fig. 3. Optical diffraction by an acoustic wave in a crystal. (a) Geome-

try. (b) Forward Bragg diffraction.

I (I= 1, 3) are given by, for both TE and TM waves,

““P1~ = Re (tIn) lE’MgI~ 12/ti~. (25)

Therefore, the nzth-order diffraction efficiencies of the

transmitted and reflected waves q:= P1~ /PIO are given

for arbitrary orientation of the waves.

For a lossless and time-invariant medium, the power

conservation relation requires ZJ2E, M( q~ + q~ ) =1, which

can be used as a check for the numerical calculations.

However, for a time-periodic medium pumped by external

source (for instance, by an acoustic wave), this relation

does not hold because energy transfer occurs due to the

parametric coupling in the medium.

III. NUMERICAL RESULTS

A. Optical Diffraction by an Acoustic Wave

As shown in Fig. 3, we assume that an acoustic shear

wave polarized along the y axis propagates in the xz plane

with the propagation vector K inclined to the slab normal

at an angle 0. The medium in the slab has a uniaxial

wurtzite crystal structure with its optic axis along the y

direction. Coordinates are chosen such that the x, y, and z

axes are along the [010], [001], and [100] directions, respec-

tively.

The acoustic wave is given by

u(r, t)=iyAsin(n~. r–ti,t) (26)

where

K/k. =n~= iXp +i,s

=n~(iXcos O+iZsin O). (27)

The components of the strain tensor Sij due to the acoustic

wave is given by S,j cos(n~. r – tirt), where S,J = ~(AZK~ +

A, K, ). The strain induces a small periodic variation A t(r, t)

in the tensor permittivity 2. This effect is usually described
in terms of photo-elastic coefficients p~[~~ and is given

by [9]

(28)

where ~,1 are the elements of tensor permittivity in the

absence of strain. In this coordinate system, the acoustic

wave with A = AY = A3, KX = K2, and K, = K1 produces

components of the strain tensor S4 = AKX and S5 = AK,,

which produce nondiagonal elements ~,Y and CYZin the

original permittivity tensor by (28), where customary ab-

breviations of indices 4 = (23)= (32), 5 = (13)= (31), Pa

= ‘2323 and the faCt Plxlj = P~qz~ are used. Therefore

elements of ? in region 2 are given by

c
XY

=cYX=8nOn=cos Ocos(n~. r–ti,t)

C“z = 6=” = 8nOn, sin9cos(n~. r– w,t) (29)

where n ~ and n, are ordinary and extraordinary refractive

indices of the crystal without strain, respectively, and the

change in the dielectric permittivity is put to – n& ~P44KA

= 8n ~n ~. The elements ~,, in C of (13) become, in matrix

form, for instance,

r1 0“0 o
0100

c =n~ ““” . . .
xx

0010’
0001

1

01”00
1010

. . . . . . , etc.
0101
0010

L

J (30)

Due to (XY and c~Z, TE–TM mode conversion takes place

in this forward diffraction. For the incidence of an TE

wave, the Mth-order Bragg condition between TE and TM

waves is given by [18], [19]

w~=l+ Mu, (31)

where 0, is the refraction angle given by 6 sin (3L= n, sin t?,.

The diffraction efficiencies of the transmitted waves -q~

for the incidence of a TE wave at the first-order Bragg

condition ( M = —1) are shown in Figs. 4-6. Calculations

were performed by using the parameter values of n, =

2.470, nO = 2.453 (CdS), n~ = 0.74557, n;= 0.11225, 8 =

0.1, 8 = 80°, and 6, =160°, and by putting u = 1 (L?<< tiO).

The parameter values of the uniform regions are chosen as

c~= c~ = n ~ to minimize the effect of the boundary reflec-
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Fig. 5. Variation of the diffraction efficiencies with the angle of inci-

dence.

1.0 (2-WaVe Approx.) TM.l

\’

,i’\ ,’ -\ tion and to compare with the approximate two-wave
\ II

TEo /’ ‘I 11
analysis.

t It1, I \ I Figs. 4 and 5 show the variation of q~ with the index

normalized thickness of the grating i3kod and with the

angle of incidence 0,. The calculations were performed by

retaining up to Ei = 3, where Z is the order of harmonics

taken into the calculations, that is, m = O, + 1,. , ., + iii.

The error in the power-conservation relation was of the

order of 10 – 8 in all our results. The results of the two-wave

appro~mation given by putting M = – 1 and o_ ~= 1 in

Appendix II are as follows:

~t
m

0.5

(32)

where

c=tlne(s_l cos6-p_lsin6)/4

A=(n~– P31–s31)/4P-1

0.0

0 2 4 6 8 10

6k, d

(b)

1.0

t
rlm

/

C2
y= —+A2

POP-1

Po=n.cos$, (33)

are also shown by the dashed curves. As seen in Fig. 4(b),

TMI and TE2 waves cannot be neglected due to the

relatively large value of ii and small value of n ~ although

the Bragg condition is not satisfied exactly for M =1.

Fig. 6 shows the variation of q~ with modulation index

8 for fixed values of s3kod = 2.0 in Fig. 4(a), where Ei was

retained up to iii = 4 for larger values of 8. It can be seen

from Fig. 6 that q! ~ begins to deviate from the two-wave

approximation near 8>0.01 and that the deviation in-
creases considerably for 8> 0.1 with the appearance of the

higher order diffractions, showing the limit of the two-wave

approximation. In the practical applications, the quantity

8 is usually of the order of 10-3 and then the two-wave

approximation will give fairly exact results.

So far we put w = 1 because the values of c+= Q/o. are

the order of 10-6 in practice. However, the theoretical

0.5

0.0

0 1 2 3 4 5
($k~d

(c)

F]g. 4. The diffraction efficiencies of transmitted waves for the inci-
dence of a TE wave at the first-order Bragg condition. (a) n~ = 0.74557,

(b) n:= 0.11225, and (c) nj = 0.74557 with a, = 0.03-0.05.
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Fig. 6, Variation of the diffraction efficiencies with the modulation

index.

analysis still holds for ~ # 1. We then show some effects of

time-varying medium in Fig. 4(c) by hypothetically putting

U. = 0.03-0.05. Other parameter values are the same as

those in Fig. 4(a). The calculations were performed by

retaining up to fi = 7 because the conference of the solu-

tion becomes poorer due to the parametric coupling in the

time-varying medium. As can be seen from the figure, the

diffraction efficiency of the TM_ ~ wave is decreased due

to both the parametric coupling and the deviation from the

true Bragg condition. This can also be anticipated from

(A4) and (A7) in Appendix II.

B. Optical D~fraction by a Cholesteric Liquid Crystal (CLC)

As shown in Fig. 7, let the helical axis of a CLC with

pitch P be along the u axis, which is inclined to the

surface normal by an angle O in the xz plane. The tensor

permittivity of the CLC for the uuw coordinate system is

given by

[

1–8 o 0
~1=~ o l–r$cos2a 8sin2a

1

(34)

o Ssin2a l-tacos2a

where

:=(6w+cu)/2= ii*

i3=(6w-Eu)/(fw+~u)

cU=c O=n~ cW=n~

cl= 2vu/P. (35)

This tensor permittivity can be represented by an ellipsoid

in which the c~ = =(1 – ~) principal axis is always parallel

to the u axis, and the two other principal axes c~ = :(1 – 8)

and e. = z(1 + ti ) spiral around the u axis with pitch

P = 2 u/a [10], [11]. According to (34), the structure is

periodic along the u axis with a space period A = P/2.

Since the quantity 8 expressing the periodic variation of

the tensor permittivity in the CLC is usually of the order

of 10 – 1, the approximate analysis may not always give

correct results and the 4 x 4 matrix method is used for

precise calculations. However, the method cannot be ap-

(b)

Fig. 7, Optical diffraction by a cholesteric liquid crystal. (a) Geometry.

(b) Backward Bragg diffraction.

plied to the case where the helical axis of the CLC is not

perpendicular to the surface. Such situations may be real-

ized through the orienting effect of boundaries [11].

The tensor permittivity for the xyz coordinate system is

then obtained by rotating the old coordinate frame about

the u axis through an angle d and its elements become

cXX= E(l – 8cos20 + 8 sin2f3cos2a)

c~y = :(1– 8cos2a)

e,, = ;(1– 8sin2d + 8cos20cos2a)

.- —.—— Ftl sin (3sin 2LY‘ ~Y— ‘yx —

‘Y= = ‘Z.Y=

c =—X2= ~zx

where

n~. r=2a

and in matrix form, for

jCfScos O
Cy= =

2

;8 cos e sin 2a

i8cos Osin8(l+cos2a)

n~=A/A=2A/P

instance,

1.
L –6 o 0 I

–82–80
. . .

0 –8 2 –8 ‘
oo–f32

I

o –1 o 0
lo–lo

. . . . . .

010–1
0010

(36)

(37)

etc.

(38)
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The diffraction efficiencies of reflected waves (reflection spec-

tra) for the incidence of a TE wave.

Fig. 8 shows the diffraction efficiencies of the reflected

waves (reflection spectra) q; near the first- and second-

order Bragg conditions, where f3i= 1350, 0 = 10°, and d/A

= 30. The parameter values of the CLC are chosen as

n: = 2.690, n:= 2.200, and 8 = 0.1002 for M =1, and

n: = 3.060, n: = 2.430, and 8 = 0.11475 for M = 2, respec-

tively, and those of the uniform regions are chosen as

c1 = t~ = 2.25 [14].

The calculations were performed by retaining up to

Z = 3 with energy conservation error of 10 – 8 as before.

Since all diagonal and nondiagonal elements Cij have

periodic variations, both TE–TE and TE–TM diffractions

take place simultaneously. The arrows in the figure at

n~ =1.780, n~ =1.895 and n~ =1.007, n~ =1.069 show the

first- and second-order Bragg reflection points corre-

sponding to TE–TM and TE–TE diffractions. In this

backward diffraction, some of the lower order eigenvalues

Km have complex values near this Bragg points that corre-

spond to the first- and second-order stopbands. Outside

these stopbands, these eigenvalues have real values that

correspond to the passband in which selective reflections

do not occur. As can be seen from Fig. 8, the first-order

reflection spectra oscillate rapidly with the variation of n k

due to the effect of both multimode coupling and multiple

reflections at the boundaries, and they cannot be expressed

exactly by the approximate two-wave analysis. Fig. 9 shows

the variation of q~ and q~ with the thickness of the CLC

at n k =1.790 in Fig. 8. The small beats due to the multiple

reflection disappear gradually with increasing d/A be-

cause the incident TEO wave is totally converted to re-

flected TEI and TMI waves before it reaches the other

boundary for larger values of d/A.

1.0

i

t
‘o

0.5

0.0

TM i

c1 = ‘3 = 2“25
= 135°, 8 = 10°

0 5 10 15 20 25 30

d/A

Fig. 9. Variation of the diffraction efficiencies with the thickness of the

CLC.

TABLE I
ACCURACY OF THE FIRST-ORDER REFLECTED DIFFRACTION

EFFICIENCIES WITH 8 AS A PARAMETER FOR THE
INCIDENCE OF TE WAVES

6 0.05 0.1 0.2 0.3

TEO - TE1

El 2i+l ~:
1 3 0.053897 0.161734 0.729490 0.835059

2 5 0.054371 0.176875 0.733845 0.828723

3 7 0.054371 0.176876 0.733863 0.828928

4 9 0.054371 0.176876 0.733863 0.828929

5 11 0.054371 0.176876 0.733863 0.828929

6 13 0.054371 0.176876 0.733863 0.828929

TEO - TM 1
iii2Fl+l ~:
1 3 0.157467 0.824571 0.045721 0.019838

2 5 0.157633 0.810122 0.036696 0.024229

‘3 7 0.157633 0.810122 0.036701 0.024267

4 9 0.157633 0.810122 0.036701 0.024267

5 11 0.157633 0.810122 0.036701 0.024267

6 13 0.157633 0.810121 0.036701 0.024267

0, =135°, O =10°, d/A= 30, nk =1.79.

C, Accuracy of the Numerical Calculations

Table I shows the accuracy of the solution by the

truncation of the matrix C in the case of Fig. 8 with the

fixed value of d/A and { with 8 as a parameter, where fi

is the order of space harmonics and 2 iii+ 1 is the total

number of space harmonics used in the calculations. In

this case, CU= (U= Z(1– 8), and (W= i(l+ 8) varies with 8

so that the Bragg condition is satisfied only for 8 = 0.1.

From this table, it can be seen that the solutions have

almost converged at ~ = 3. Since the other examples

showed similar results, most of the calculations were per-

formed by retaining up to Z = 3–4 with the error in the

power-conservation relation of the order of 10-8 in all our

results.

IV. CONCLUSIONS

A rigorous analysis of wave diffraction by space–time

periodic anisotropic media has been formulated. The direc-

tion of the grating vector, the modulation of the medium,
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and the polarization of the incident plane wave are all

arbitrary. The solution is reduced to an eigenvalue prob-

lem of the coupling matrix whose elements are given by a

unified form so that calculations can be performed by

systematic matrix calculations. The method applies to arbi-

trarily thick or lossy media without encountering overflow

problems in the computations by giving boundary condi-

tion in somewhat modified form. As numerical examples,

optical diffraction by an acoustic wave and by a CLC are

considered, and the results are compared with the ap-

proximate two-wave analysis. Any level of accuracy can be

obtained by increasing the space–time harmonics. Al-

though the retention of relatively few harmonics is suffi-

cient for continuously modulated time-invariant media,

usually more harmonics are necessary for time-varying

media because the effect of parametric coupling increases

with an increase in modulating frequency.

APPENDIX I

DERIVATION OF THE COUPLING MATRICES

By substituting (6) into (3), multiplying exp { j(n ~. r –

Um t ) } on both sides, and integrating over y, z, t for each

period, we get the infinite set of coupled-wave equations

aeytil
— – jp.ey. + Jqmex. =

ax
– .h,hzw

ae,m
— – Jkezm + $.exm = .MJ.v.,

ax

ah,m
— – W$y. + .hh.. =.@., E Dz,,l-m=%

ax 11

ah,m

ax
— – jp~hZ~ + js~hz~= – j%~ ~cyz,[-rnell (Al)

[1

qmezw– ‘meym= ‘mh.m

– qmthw, +Strlym = urn~ ~~.,,[-fi,e,l. (AZ)

Equations (A2) can be solved for eX~ and hXm. Then,

substituting these into (Al), we get the coupled-wave equa-

tions (10) in matrix form with C and D given by (12)–(14).

APPENDIX II

DERIVATION OF APPROXIMATE TWO-WAVE ANALYSIS

If we retain only m = O and m = M terms in the rigor-

ous equation (10) with t given by (29) and eliminate

h,ti(i = y, z ), we get the coupled differential equations for

e,n with the second derivatives. Neglecting further the

terms of d 2e,~ /dx 2, 8de,~/dx, and 82e,w for small values

of 8, we get the following differential equations:

deYO cn.
—= “—
dx J pOp~e’M

de,~ c
— +2jAe,M= ~;eyO

dx 0
(A3)

with

c= 8n,(sMcos0 –p~sin9)/4

(A4)

where c and A represent the effective coupling coefficient

and the deviation from the Bragg condition, respectively.

The solution of (A3) under the boundary conditions of

eJ,o(0) = 1 and ezM(0) = O becomes

( )evo = cosyx + j: sinyx exp(– jAx)

c
ez~. j— sinyxexp(– jAx)

n ~y
(A5)

with

/

C2
y= — +A2. (A6)

POPM

The zeroth- and Mth-order powers along the x direction

are ‘P. = poleyol 2 and ‘PM = tiMln OeZM12/pM. Since x

represents the normalized variable, the diffraction ef-

ficiency becomes

‘PM(-kod)

( )

2

~fM =

EPO(o)
= ‘iJf &y Sinykod . (A7)

Equation (A7) shows that the diffraction efficiency is

increased or decreased by a factor tiM due to the paramet-

ric coupling in the time-varying medium.
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